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The criteria for the onset of thermocapillary convection in a horizontal radiating fluid layer 
heated by an incident thermal radiative energy source are determined. The fluid layer is an 
absorbing and isotropically scattering medium confined between a free upper surface and 
an insulated rigid lower surface. Linear analysis is performed on the continuity, momentum, 
energy, and approximate radiative equations. The resulting disturbance equations are 
solved using a numerical optimization technique to obtain the eigenvalues governing the 
onset of convective motion. The influence of thermal radiation on the critical Marangoni 
number is examined. Attention is drawn to the physical significance of the heat transfer 
mode, gravitational force, the scattering effect, and the surface radiative properties. The 
conditions leading to the onset of convection are presented as functions of the optical 
thickness, scattering albedo, Planck number, surface emissivities, and transmissivities. 
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I n t r oduc t i on  

Controlling thermocapillary convection in material processing 
in space has gained importance as a possible mechanism for 
producing large crystals of uniform properties and manufactur- 
ing materials with unique properties. As the buoyancy force 
diminishes in the microgravity environment found in many 
sustained space flights, thermogravitational convection be- 
comes negligible. However, thermocapillary convection gen- 
erated by variation of surface tension with temperature is a 
major mechanism that introduces motion in many of these 
space experiments. Thus, a better understanding of controlled 
surface-tension-driven convection is important to improve the 
techniques of material processing in space. 

The onset of buoyancy-driven convection in a thermally 
radiating fluid layer has received considerable attention in the 
past. For layers with small and large absorption coefficients, 
Goody (1956) studied the thermal instability of a radiative fluid 
layer bounded by free surfaces using a variational method. 
Spiegel (1960) considered the same stability problem for rigid 
boundaries but neglected the effect of conduction. Murgai and 
Khosla investigated the combined effects of thermal radiation 
with rotation (Murgai and Khosla 1962) and magnetic field 
(Khosla and Murgai 1963) on the Benard problem by following 
Goody's approach. Christophorides and Davis (1970) extended 
the work to study the interaction of radiation and conduction. 
Arpaci and Gozum (1973) studied the thermal instability of 
fluid layers by using the Eddington approximation for 
radiation. In a recent investigation, Yang (1990) investigated 
the interactions of radiating fluids with the surroundings by 
imposing a radiative heat flux at the free upper surface of the 
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liquid layer. The study was performed on a gray and 
nonscattering medium. 

The studies above are restricted to buoyancy-driven 
convection, while the effect of surface tension forces in a 
radiating fluid layer has not been given much attention, 
although they have a significant impact on many of the space 
experiments. Bayazitoglu and Lam (1987) studied the 
thermocapillary convection in a nonscattering medium without 
external radiation sources and gravitational force. Herein, as 
an extension of the aforementioned investigation, is a study 
of the onset of thermocapillary convection in an absorbing- 
scattering medium subjected to irradiation. 

The resulting disturbance equations for the stability problem 
arise from linear analysis are recast into an optimal control 
problem. A numerical optimization technique known as the 
sequential gradient-restoration algorithm is employed to find 
the eigenvalues governing the onset of convective motion. The 
critical Marangoni number defining the threshold for the onset 
of convective instability is determined. Numerical results are 
presented to illustrate the influences of the incident thermal 
radiation, scattering albedo, surface radiative properties, and 
gravitational force. 

Outline 

A brief description of the physical problem, governing 
equations, and boundary conditions is first presented. This is 
followed by the solutions of the base-state temperature and 
radiative heat-flux profiles. Linear analysis is performed on the 
governing equations. The resulting disturbance equations are 
recast into an optimal control problem. The sequential 
gradient-restoration algorithm is then applied to find the 
eigenvalues (critical Marangoni and wave numbers) for the 
convective instability problem. The results are presented for a 
wide range of thermal and radiative properties, including the 
Planck number, gravitational force, scattering albedo, and 
surface properties of the boundaries. 
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M a t h e m a t i c a l  f o r m u l a t i o n  

1 
The physical model considered in this study is depicted in /f 
Figure 1. It consists of a radiating incompressible fluid layer xa  
of infinite horizontal extent confined between the region 
0 < z _< d. The origin of the Cartesian coordinate system is 
affixed on the lower boundary of the fluid layer, and the z-axis d 
is directed vertically upwards. The fluid layer is assumed to be 
an absorbing and isotropically scattering medium. The lower 
boundary is a thermally insulated solid surface with 
hemispherical emissivity and reflectivity of et and p ~ = 1 - e~, 
respectively. The hemispherical reflectivity of the upper free Figure 1 
surface is P2, and its transmissivity is zt2. The upper free surface 
dissipates heat by convection with a heat transfer coefficient h 
into an environment at temperature T~. Due to an external 
radiation incidence q" at the upper free surface, the liquid 
layer has a nonuniform volumetric energy source. 

Governing equations 

The physical properties such as viscosity, thermal conductivity, 
specific heat, and thermal expansion coefficient are independent 
of temperature, with the exception of the surface tension and 
the density appearing in the body force (i.e., Boussinesq 
approximation). The summation convention on repeated 
indices is used throughout this work, in which the subscripts 
t, i, and l(i, l = x, y, z) denote partial derivatives with respect to 
the time and the space coordinates, respectively. By using the 
Eddington approximation for the equation of radiative transfer, 
and assuming that the contributions of viscous and radiative 
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Schematic diagram of the physical system 
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stress are negligible, the equations governing the fluid motion 
are as follows (Arpaci and Gozum 1973; Yang 1990): 

Continuity 

- - = 0  

Momentum 

tgt ~xz - Pc 

Energy 

t~T tgT t~2T 

~t gx~ gx~ 

(1) 

1 ~P t32Vi 
+ v - -  (2) 

P0 Ox~ 0x 2 

1 tgq~ 

PoCo Ox~ 
(3) 

N o t a t i o n  

a Horizontal wave number 
Bi Blot number, tul/k 
C O Specific heat at constant volume 
d Thickness of the fluid layer 
D Differential operator, d/dZ 
~ Unit vector (0, 0, - 1) 
E b Blackbody emissive power of the fluid, a T  4 
g Gravitational constant 
h Convective heat transfer coefficient 
I Radiative intensity or functional (Equation 38) to 

be minimized 
j First moment of radiative intensity, ~ald f~ 
J Amplitude function of the first moment of 

radiative intensity 
k Thermal conductivity 
Ma Marangoni number, [l(OaJOT)o[d/=l~o](q'd/k ) 
P Pressure 
PI Planck number, 4~T3o/(k/d) 
Pr Prandtl number, v/u 
q" Incident radiative heat flux 
qR Radiative heat flux 

Nondimensional base-state radiative heat flux 
Ra Rayleigh number, (gfld3/v~Xq"d/k) 
t Time 
T Temperature 
V~ Fluid velocity vectors 
w Fluid velocity in the z-direction 
W Amplitude function of the disturbance velocity 
x~, xz Spatial coordinates 
Z Nondimensional depth, z/d 

Greek symbols 

C( 

~M 
~p 
0~ R 
fl 
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0 
O 
# 
V 

P 
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O" s 

T 

~t 
(D 

fl 

Thermal diffusivity, k/poCo 
Root mean square absorption coefficient, ~/(=~R) 
Planck mean absorption coefficient 
Rosseland mean absorption coefficient 
Thermal expansion coefficient 
1/[40/~1 - 0.5)] 
1 / [ 4 ( 1 / z t 2  - 0.5)-! 
Diffuse emissivity of the lower boundary 
Degree of nongrayness of fluid, ~/(=~/=a) 
Nondimensional base-state temperature 
Amplitude function of the disturbance temperature 
Dynamic viscosity 
Kinematic viscosity, #/p 
Density or reflectivity 
Stefan-Boltzmann constant 
Surface tension 
Optical thickness, =Md 
Transmissivity of the upper surface 
Scattering albedo 
Solid angle 

Superscript 

- Base state 

Subscripts 

0 
1 
2 
C 

i, l 
(3o 
x, y, Z 

Reference state 
Lower boundary 
Upper boundary 
Critical 
Spatial index 
Environment adjacent to the upper free surface 
x, y, and z components 
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Approximate radiative transfer 

a2j 3aeo~ . =eo~ 
- -  = E~,  ( 4 )  

0x 2 1 - o J  "/ - 1 2 1 _ o  

The equation of state is defined by assuming a linear 
density-temperature relation in the form P/Po = 1 - ~(T - To). 

Boundary  Cond i t ions  

The governing equations 1-4 are to'be solved subject to the 
appropriate boundary conditions. The relevant velocity, 
thermal, and radiative boundary conditions are as follows: 

At the lower rigid surface z = 0, 

V= = ~ = V. = 0 (5) 

-k d T  + d = 0 (6) 
dz 

aq~ _ 0¢,~ = 0 (7) 71 ~-z 

d Jr-j ---- 4E b (8) 
ZTX 

At the upper free surface z = d, 

V, = 0 (9) 

(~v~ a ~  a~, 
+ = (lO) 

#o ~-z = - ( p  -- Po) (12) 

- k  OT = h(T - Too) (13) 
& 

1 a ~  + l ~ i t  4['(Eb Eboo) (14) 
ap ~z 72 

1 - ~ j  
t - j  - 4(Eb= + q") (15) 

3~lt 72 0Z 

On the upper fluid-free space interface, the differential 
temperature generates surface tension, and thus induces 
convection or unstable cellular flows. In the present study, the 
surface tension ~s is assumed to vary with the temperature 
according to a, = #o + (O¢,/OT)o(T - To). 

Base-state analysis 

An equilibrium condition exists within the fluid system if the 
strength of the incident radiative energy source, q", is 
sui~ciently small. In this study, the aim is to investigate the 
effect of the incident radiative source q" on the onset of 
natural convection in a horizontal liquid layer. Hence, the 
base-state temperature and the radiative heat-flux profiles 
within the fluid system are of interest. In the absence of natural 
convection at the equilibrium state, the equations governing 
the base-state motions of a liquid layer are (Yang 1990) 

d~T d~ 
k - -  = 0 (16) 

dz ~ dz 

_ _  dEb 
d2~dz 2 13%°~=- o~ ~= -- 4=v ~ (17) 

subject to the following boundary conditions: 

at z = O: 

- k  dT+~-- = 0 
dz 

71 - ~pO~ = 0 

(18) 

(19) 

a t z = l :  

-k--=~T h ( T -  Too) (20) & 

1 
1 d~= R t- --  ~ = 4[(Eb -- Eboo) -- q"] (21) 
ap dz 72 

As mentioned previously, the base-state temperature and 
radiative beat-flux profiles within the fluid layer are required 
for stability analysis. To solve for the temperature profile, the 
blackbody-radiation term E b in the above equations can be 
linearized, since the high temperature level rather than the large 
temperature differences are of primary interest. 

After scaling the spatial coordinates x~ by d, the time t by 
d2/~x, the fluid velocity Vi by =/d, the temperature T by q"d/k, 
the pressure P by [~/d 2, and the radiative heat flux ~ ,  the 
radiative intensity j, and the blackbody emissive power E b by 
q", the solutions to the nondimensional base-state tempera- 
ture and radiative heat-finx are 

0 - 0oo = Ct + C2 cosh (mZ) + C3 sinh (mZ) (22) 

= inCa cosh (mZ) + mC 2 sinh (mZ) (23) 

where 

m = \1 ( 332- m + 4qxP1) 1/2 

4 ~ ( m 2 + B i ~ c o s h m + m ( B i + ~ ) s i n h m ]  

C l = 
C, 

4Bi 
C 2 ~ _ _ _  

C47t 

4mBi 
C 3 ~ - - - - -  

C4q~ 

m2[ Bi Bi'X / B i  Bim 2 PI\  
C4 = - - / 4 P l  + - -  + - - / c o s h  m + m l - -  + - -  + - - l  sinh m 

,1~\ 7, 72) \7,72 ~ ' "  7 , ]  

The stabi l i ty  analysis 

The basic governing equations for laminar flow, given by 
Equations 1-4, are the continuity, momentum, energy, and 
approximate radiative transfer equations respectively. Based on 
the conventional linear stability theory, the field variables in 
these equations are assumed to undergo infinitesimal 
disturbances. The total instantaneous quantity, which consists 
of the sum of the steady-state value and a perturbation, can be 
written as 

F(X, Y, Z, t) = Fb(Z ) + F*(X, Y, Z, t) (24) 

where F b and F* denote, respectively, the steady-state 
solution and disturbance quantities for the velocity, tempera- 
ture, and radiative intensity. The lineaffzed equations 
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governing the initial decay or growth of the disturbances are 
obtained with the conventional approach (Chandrasekhar 
1961) by introducing Equation 24 into the system of Equations 
1--4, subtracting the base flow equations, and neglecting all the W = 0 
nonlinear and higher-order terms. To investigate the stability 
of the fluid system, one can examine the effects of the initial D W  = 0 
decay or growth of the disturbances. Since there are no lateral 
boundaries on the system, an infinitesimal two-dimensional ~/(1- co) 

- - D J = O  (2-D) disturbance can be expressed in the form DO + 3~ 

F*(X, Y,, Z, t) = F(Z) exp [i(axX + ayY) + at] (25) 

where F(Z) represents the amplitudes of the radiative 
intensity, velocity, or temperature; and ax and ay are the x- and 
y-direction wave numbers, which are related to the horizontal 
wave number by 

a = (aZ~ + a~) 1/2 

The complex growth rate a of the disturbances is given by 

a = O r q- iG i 

The system is at the neutral stable state when a r = 0. For 
the case a, > 0, the liquid is obviously unstable because the 
velocity increases exponentially. The base state is said to be 
stable if a, is less than zero. 

The principle of exchange of stabifity has been studied 
extensively by Davis (1969). In particular, the application of 
the theorem has been made to Benard convection (Christ- 
ophorides and Davis 1970; Arpaci and Gozum 1973) with 
thermal radiation. It has been proven that the principle of 
exchange of stability holds for convection with radiative 
transfer for a fluid layer bounded either by an upper rigid or 
stress-free surface for any optical thickness. On the subject of 
thermocapillary convection, it has been shown numerically by 
Vidal and Acrivos (1966) and Takashima (1970) that the 
principle holds for a fluid layer bounded by an upper 
undeformable surface. Furthermore, Takashima (1981) has 
shown that the incipient instability occurs in the stationary 
mode for surface-tension-driven convection in a horizontal 
liquid layer with a deformable free surface. This conclusion has 
also been verified by Castillo and Velarde (1982), who 
performed a first-order analysis based on Galerkin's method 
to study the buoyancy-thermocapillary and interfacial de- 
formation effects in one- and two-component fluid layers. 

In this general context, the principle of exchange of stability 
is valid for the present thermocapillary convection problem. 
The perturbation equations governing the Z-component of the 
velocity, the temperature, and the radiative intensity perturba- 
tions can be formulated by introducing Equation 25 into the 
resulting linearized equations. Assuming that the validity of the 
exchange of stabilities holds, the real and imaginary parts of 
the most unstable eigenvalue vanish at the marginal state that 
corresponds to the stationary instability. As a result, the 
perturbation equations governing the marginal state for the 
Z-component of the velocity, the temperature, and the radiative 
intensity can be written as (Bayazitoglu and Lam 1987; Yang 
1990) 

(D 2 - a2)2W = a 2 R a O  (26) 

dO 
( D  2 - -  a 2 - -  4r/~PI)O + t/¢J = - -  W (27) 

dZ 

12~2 P I O + ( D  2 - a  2 3z2 ~J  
1---C-~ 1 - - -~ /  = 0 (28) 

with the boundary conditions as follows: 

at Z =  0: 

t/(1 -- co) 
4PIO + - -  

3~?i 

a t Z =  1: 

(29) 

(3O) 

(31) 

DJ -- J = 0 (32) 

W= 0 (33) 

(D 2 + aZ)W + Maa20 = 0 (34) 

DO + BiO = 0 (35) 

,1(1 - co) 
- -  D J  + J = 0 (36) 

3"t72 

The boundary conditions (Equations 29, 30, and 33) are the 
familiar boundary conditions of the classical Bcnard problem. 
Equations 29 and 33 imply that the normal components of the 
velocities vanish at both boundaries, Z = 0 and Z = 1. Equa- 
tion 30 represents the no-slip, impermeability conditions at the 
bounding lower rigid surface. Boundary conditions 31, 32, and 
36 account for the effects of radiation. The surface tension effect 
at the free surface, represented by Equation 34, designate the 
continuity of the tangential stress at the interface. Equation 
35 expresses the interfacial thermal condition, and represents 
the fluid medium that exchanges heat with the environment. 
The parameters that control the stability include the wave 
number (a), Biot number (Bi), Marangoni number (Ma), 
Rayleigh number (Ra), optical thickness (~), transmissivity of 
the upper surface (z,2), emissivity of the lower surface (el), 
scattering albedo (co), Planck number (P1), nongrayness 
parameter (t/), and the dimensionless base-state temperature 
profile (do/dg). 

The Biot number is the ratio of the convective heat transfer 
to the internal thermal conduction across the fluid layer. It 
represents the heat transfer condition at the free surface. The 
Marangoni number, defined as the ratio of the surface tension 
to heat diffusion and the viscous force, is a measure of both 
the surface tension gradient along the free surface and the 
temperature difference across the layer. The critical Marangoni 
number, Mac, denotes the minimum temperature difference at 
which instability will occur. The Rayleigh number is a measure 
of the buoyancy force and the viscous force. The Planck 
number is the ratio of radiation to conduction. The nongray- 
hess t/is defined as the ratio of the opticalxlepths based on the 
Rosseland mean and the Planck mean absorption coetficients. 

The disturbance equations 26--28, together with the homo- 
geneous boundary conditions 29-36 constitute an eigenvalue 
problem. The nontrivial functions W, O, and J satisfy all of 
these conditions only if there exists a functional relationship 
such that 

(37) f(a, Bi, Ma, Ra, ~, ¢tz, ~1, co, t/, PI, do/dZ) = 0 

The primary objective of this investigation is to determine the 
critical value of the Marangoni number and the corresponding 
wave number on the loons of states that are neutrally stable. 
The states are represented by the parametric space given by 
Equation 37. Also, the dimensionlus base-state temperature 
profile do/dZ across the fiquid layer is examined, and its 
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radiation effect on the thermal convective motion is 
determined. 

M e t h o d  o f  s o l u t i o n  

Equations 26-36 are the required perturbation equations 
governing the stability problem under consideration. The 
eigenvalue problem is recast as an optimal control problem 
and solved with a numerical optimization technique. The 
following demonstrates how the resulting perturbation 
equation for the stability problem can be recast into an optimal 
control problem and provides a brief discussion of the solution 
method. 

Optima/control problem formulation 

The higher-order differential equations (Equations 26-36) 
governing the stability problem can be rewritten as a system 
of simultaneous first-order equations. The resulting mathemati- 
cal problem will then be presented as an optimal control 
problem. 

In the following development, the symbol Z denotes the 
nondimensional spatial variable; the symbols xgZ), i = 1 . . . . .  m, 
denote the components of the state ( W , J , O  and their 
derivatives). 

dx,, d~W 
= - m=  1,2, 3,4 

dZ dZ 

dx~ d~-40  
- - = ~  m = 5 , 6  
dZ dZ 

dx m d~ - 6 J 
- - = - -  m = 7 , 8  
dZ dZ 

With these notations, the differential equations 26--28 can be 
written as a system of first-order differential equations. Thus, 
one can recast the convective instability problem presented 
previously into an optimal control problem in the following 
form: 
Minimize the functional 

I = Ma (38) 

subject to the differential constraints 

dx~ 
dZ xz (39) 

dx2 
dZ x3 (40) 

dx3 
dZ x4 (41) 

dx,, 
d-Z = 2aex3 - a4xl + aZRaxs (42) 

dxs 
d-Z = x~ (43) 

dO 
dx_._6~dZ = (a2 + 4~/¢PI)x5 - -  r/zx7 + ~ xl (44) 

dx. 7 
~-~ = x ~  ( 4 5 )  

a 3't2 ~ 12~2p1 
dxs z + xs (46) 

= i = ; f f '  1-o  

and the boundary conditions 

at Z = 0 :  

x I = 0 (47) 

x z = 0 (48) 

x6 + ~_(1 --OJ)x s = 0 (49) 
37 

,1(I - co) 
4Plxs + 3z7---~ xs - x7 = 0 (50) 

a t Z =  1: 

x 1 = 0 (51) 

x3 + a2xl + Maa2x5 = 0 (52) 

x6 + Bix5 = 0 (53) 

7(1 - (o) 
3~2 xs +x7 = 0  (54) 

The eigenvalue problem defined by Equations 38-54 
constitutes an optimal control problem. The problem is solved 
for a given base-state conduction temperature gradient (dO/dZ) 
across the liquid layer by specifying the values of Bi, a, Ma, 
Ra, zt2, ~1, ~o, r/, and Pl for various values of the optical 
thickness 7. The aim of the problem is to minimiTe the 
Marangoni number and the corresponding wave number for 
these particular physical parameters. The sequential gradient- 
restoration algorithm (SGRA) has been successfully applied to 
the study of fluid flow (Lain and Bayazitoglu 1986a) and heat 
transfer (Lain and Bayazitoglu 1986b, 1987, 1988), and is 
selected as the solution technique for this problem. 

Sequential gradient-restoration algorithm 

SGRA is a first-order algorithm developed by GonTalez and 
Miele (1978) for the optimal solution of mathematical problems 
involving both inequality and equality constraints. The 
sequential gradient-restoration algorithm involves a sequence 
of two-phase cycles, each cycle including the gradient phase 
and the restoration phase. In the gradient phase, the value of 
the augmented functional is decreased while avoiding excessive 
constraint violation. In the restoration phase, the constraint 
error is decreased while avoiding excessive change in the value 
of the functional. In a complete gradient-restoration cycle, the 
value of the functional is decreased while the constraints are 
satisfied to a predetermined accuracy. Hence, a succession of 
suboptimal solutions is obtained. The iterative procedure is 
terminated when both the functional and constraints meet their 
convergence criteria. The reader is referred to Gonzalez and 
Mide (1978) for details regarding SGRA. The convergence 
history of SGRA is illustrated in Figure 2 for a single variable 
function. 

Results and discussion 

The conditions leading to the onset of thermocapillary 
convection in a horizontal participating medium subjected to 
external radiative incidence have been obtained by using 
SGRA. The present study focuses only on the marginal stability 
mode. The critical Marangoni number that defines the 
threshold for the onset of thermal convective instability has 
been determined as a function of the Planck number, the optical 
thickness, the Rayleigh number, the scattering albedo, and the 
emissivity and transmissivity of the bounding surface~ The 
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Objective Function 
\ s=~u,s PoUa 

R 

G 

G: G t t d l m t  Plume 

Figure 2 Convergence history o f  the sequent ia l  gradient- 
restoration algor i thm 

effects of the upper thermal boundary condition (in terms of 
Bi) and nongrayness (t/) have been previously investigated for 
a similar system, and therefore their effects will not be 
re-examined in the present study. Interested readers should 
refer to an accompanying paper given by Bayazitogiu and Lam 
(1987) for details. 

As a result of the absorbed and scattered thermal radiative 
energy due to the incident radiative heat flux, the base-state 
temperature gradient in the conduction regime plays an 
important role on the conditions leading to the onset of thermal 
convective motions. The influence of the optical thickness on 
the base-state temperature profile is shown in Figure 3a. For 
small optical thickness (z = 0.0001), this corresponds to a 
nonparticipating medium; in such a case the incoming energy 
is absorbed throughout the fluid layer. Therefore, the 
temperature gradient corresponds to the case of uniform heat 
generation and deviates from unity with a smooth slope. The 
same trend continues to hold for moderate small values of z. 
However, as z is increased further, the influence of the optical 
thickness on the temperature gradients has more profound 
effects. With increasing optical thickness, the radiation is 
absorbed mainly in the top strata. As a result, the temperature 
gradient is steep near the upper boundary and flat near the 
bottom of the liquid layer. The upper strata are more unstable 
than the lower region, which has a more uniform temperature. 

Figure 3b shows the effect of the scattering albedo on the 
base-state temperature distribution. The scattering albedo oJ is 
defined as the ratio of the scattering coefficient to the extinction 
coefficient (sum of the scattering and absorption coefficients) 
of the medium. For moderate scattering albedo, the incident 
energy is absorbed uniformly throughout the medium; hence, 
the temperature gradient changes gradually across the fluid 
layer. As o~ is increased further, the attenuation of the incoming 
energy process becomes more profound, which decreases the 
radiation energy reaching the lower boundary. Physically, this 
corresponds to the situation in which the penetrating radiation 
energy is absorbed mainly in the top stratum. The change in 
fluid temperature occurs mainly near the upper boundary and 
is confined within a small region. Therefore the degree of 
stability of the system is increased for large (o. 

The effects of the lower solid boundary emissivity (sz) on the 
critical Marangoni number are shown in Figure 4. The most 

unstable situation corresponds to a black surface for ~x = 1.0. 
In this case, all the incoming radiation reaching the lower 
surface is absorbed and none is reflected. Boundaries of unity 
emissivity yield the lowest critical values of the Marangoni 
number. The case of mirror boundary (~1 -- 0) corresponds to 
the most stable situation. The radiation is totally reflected by 
the surface and absorbed wholly within the fluid. As z >> 1, most 
of the penetrating radiation energy is absorbed in the upper 
stratum and a very small fraction of it reaches the lower surface, 
and the emissivities of the boundaries do not play a significant 
role in the stability of optically thick medium. The emissivity 
of the bounding surfaces are not of major importance because 
of this substantial attenuation of the incident radiation in the 
top strata. 

In Figure 5, the critical Marangoni number is presented as 
function of the optical thickness z for various transmissivities 
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Figure 3a Effect o f  the opt ical  th ickness on the base-state 
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Figure 5 Effect of the upper-boundary surface properties on the 
critical Marangoni number for m = 0, Bi = 1, PI = 1, ~/= 1, Ra = 0, 
and el = 1 

(tt2) for the upper boundary. Boundaries of unity transmissivity 
yield the lowest critical values of the Marangoni number. In 
this case all the incoming radiation energy on the top surface 
is transmitted into the medium and none is reflected. This 
provides the maximum rate of heat generation within the 
system, thus inducing a higher degree of instability. As the 
transmissivity decreases, less energy is allowed to enter the 
medium, which in turn lessens the rate of heat generation within 
the medium and therefore stabiliziqg the system. 

The effect of the gravitational force is shown in Figure 6. 
The results are presented to determine the effect of the Rayleigh 
number Ra on the critical Marangoni number. The Rayleigh 
number is a measure of the buoyancy force and the viscous 
force, and the Marangoni number represents the ratio of the 
surface-tension gradient to viscous force. The ratio of these two 

dimensionless numbers provides an estimate of the relative 
magnitude of the surface tension and the buoyancy forces. The 
surface tension force becomes dominant compared to the 
buoyancy force in a microgravity environment. The relation- 
ship between the Rayleigh number and the Marangoni number 
is shown in Figure 6, where it is seen that the Marangoni 
number increases with decreasing Rayleigh number. Evidently, 
the buoyancy force and the viscous force play a very significant 
role in space-based convective instability experiments. As the 
gravitational force increases, the system becomes less stable. 

The effect of radiation scattering on the critical Marangoni 
number is examined and the results are plotted in Figure 7. 
For ~ < 0.01, the effect of scattering is minimal for which the 
fluid layer simulates a nonparticipating system. As the medium 
optical thickness increases further, the scattering effect becomes 
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Figure 6 Effect of the gravitational force on the critical 
Marangoni number for Bi = 1, r /=  1, PI = 1, m -  0, el = 1, and 
T t 2  = 1 
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Figure 8 Effect of the Planck number on the critical Marangoni  
number for Bi = 1, r / =  1, co = 0, Ra --- 0, 8, = l ,  and zt2 = 1 

a dominant factor. For a combination of large oJ and z, due to 
a decrease in absorption and less energy penetration, a 
stabilizing temperature distribution occurs throughout the 
layer and the system becomes more stable. Thus an increase in 
co increases the stability of the system for large ~. 

Finally, the effect of thermal radiation (in terms of the Planck 
number, PI) is demonstrated in Figure 8. The Planck number 
is defined as the ratio of radiation to conduction. From a close 
examination of Equation 22, the slo[)e of the dimensionless 
base-state temperature distribution, dO/dZ, can be lessened as 
thermal radiation becomes dominant within the fluid layer for 
PI > 1; as a result, it delays the onset of instability. Therefore, 
the critical Marangoni number increases with increasing 
Planck number, which indicates that thermal radiation 
possesses a stabilizing effect on convection. 

Concluding remarks 

The conditions leading to the onset of thermocapiUary 
convective instability in a horizontal radiation participating 
medium subjected to an external thermal radiative heat flux at 
the upper surface have been determined by using a numerical 
optimization technique known as the sequential gradient- 
restoration algorithm. The dependence of the stability 
characteristics on thermal radiation, the optical thickness, the 
surface optical properties, the gravitational forces, and the 
scattering albedo are investigated. In this study, the upper free 
surface is assumed flat as a first approximation. Although this 

model is an idealized one, it serves to identify the importance 
of thermocapillarity in the form of finite-wave and stationary 
mode. However, from a practical point of view, as the 
free-surface deformation is allowed and included, the 
oscillatory mode convection may play an important role in the 
present system. Further study is necessary to clarify their roles 
in thermal convective instability. 
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